Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats.
نویسندگان
چکیده
Mossy fiber sprouting has been proposed to lead to new excitatory connections between dentate granule cells, which in turn cause electrographic seizures. We tested this hypothesis in hippocampal slices from rats made epileptic-by kainate injections. The Timm's histological method revealed intense staining of the inner molecular layer in slices from all kainate-treated rats. In bicuculline (10 microM) and 6 mM [K +]o, antidromic stimulation of the granule cells evoked bursts of population spikes superimposed on long-lasting negative shifts in all slices tested from all kainate-treated rats. Long-duration (2-47 sec), seizure-like bursts with tonic and clonic components occurred spontaneously (53%) or in response to antidromic stimulation (81%). Under identical conditions, prolonged bursts were never seen in slices from controls or from kainate-injected rats 2-4 d after treatment. Glutamate microdrops applied in the granule cell layer evoked abrupt increases in the frequency of excitatory postsynaptic potentials (EPSPs) in two thirds of the cells tested. Glutamate microstimulation was effective at several sites in the granule cell layer but ineffective in the hilus. The proportion of granule cells responding to local application of glutamate by an increase in EPSPs was higher in slices with long bursts (80% with bursts of > 3 sec) than in slices with shorter bursts (33% with bursts of < 3 sec). Glutamate microstimulation did not affect EPSPs in granule cells from control preparations. These results support the hypothesis that kainate-induced mossy fiber sprouting forms new excitatory connections between granule cells and can lead to increased seizure susceptibility in the dentate gyrus.
منابع مشابه
Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats.
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling...
متن کاملExcitatory synaptic input to granule cells increases with time after kainate treatment.
Temporal lobe epilepsy is usually associated with a latent period and an increased seizure frequency following a precipitating insult. After kainate treatment, the mossy fibers of the dentate gyrus are hypothesized to form recurrent excitatory circuits between granule cells, thus leading to a progressive increase in the excitatory input to granule cells. Three groups of animals were studied as ...
متن کاملPhysiological unmasking of new glutamatergic pathways in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats.
In humans with temporal lobe epilepsy and kainate-treated rats, the mossy fibers of the dentate granule cells send collateral axons into the inner molecular layer. Prior investigations on kainate-treated rats demonstrated that abnormal hilar-evoked events can occasionally be observed in slices with mossy fiber sprouting when gamma-aminobutyric acid-A (GABAA)-mediated inhibition is blocked with ...
متن کاملOptical recording study of granule cell activities in the hippocampal dentate gyrus of kainate-treated rats.
In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippo...
متن کاملRepetitive perforant-path stimulation induces epileptiform bursts in minislices of dentate gyrus from rats with kainate-induced epilepsy.
The epileptic hippocampus has an enhanced propensity for seizure generation, but how spontaneous seizures start is poorly understood. Using whole cell and field-potential recordings, this study explored whether repetitive perforant-path stimulation at physiological frequencies could induce epileptiform bursts in dentate gyrus minislices from rats with kainate-induced epilepsy. Control slices fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 14 شماره
صفحات -
تاریخ انتشار 1996